Coupling capacity in C*-algebras

نویسندگان

چکیده

Given two unital C*-algebras equipped with states and a positive operator in the enveloping von Neumann algebra of their minimal tensor product, we define three parameters that measure capacity to align coupling given states. Further, establish duality formula shows equality for operators product relevant C*-algebras. In context abelian C*-algebras, our are related quantitative versions Arveson's null set theorem dualities considered theory optimal transport. On other hand, restricting matrix algebras recover generalize quantum Strassen's theorem. We show latter case can detect maximal entanglement separability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

Frames in right ideals of $C^*$-algebras

we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.

متن کامل

Local tracial C*-algebras

‎Let $Omega$ be a class of unital‎ ‎$C^*$-algebras‎. ‎We introduce the notion of a local tracial $Omega$-algebra‎. ‎Let $A$ be an $alpha$-simple unital local tracial $Omega$-algebra‎. ‎Suppose that $alpha:Gto $Aut($A$) is an action of a finite group $G$ on $A$‎ ‎which has a certain non-simple tracial Rokhlin property‎. ‎Then the crossed product algebra‎ ‎$C^*(G,A,alpha)$ is a unital local traci...

متن کامل

isomorphisms in unital $c^*$-algebras

it is shown that every  almost linear bijection $h : arightarrow b$ of a unital $c^*$-algebra $a$ onto a unital$c^*$-algebra $b$ is a $c^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in a$, all $y in a$, and all $nin mathbb z$, andthat almost linear continuous bijection $h : a rightarrow b$ of aunital $c^*$-algebra $a$ of real rank zero onto a unital$c^*$-algebra...

متن کامل

Jordan algebras of capacity two.

A recent paper by N. Jacobson' develops a theory of Jordan algebras with minimum condition which is similar to the associative theory of semisimple Artinian rings. Jacobson shows that any algebra satisfying his axioms is a direct sum of a finite number of simple algebras satisfying his axioms, and he deduces the structure of those simple algebras which contain three mutually orthogonal idempote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings

سال: 2023

ISSN: ['0890-1740']

DOI: https://doi.org/10.1017/prm.2023.81